首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   13篇
  国内免费   7篇
测绘学   8篇
大气科学   16篇
地球物理   52篇
地质学   182篇
海洋学   24篇
天文学   66篇
综合类   5篇
自然地理   10篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   5篇
  2020年   9篇
  2019年   12篇
  2018年   15篇
  2017年   10篇
  2016年   22篇
  2015年   8篇
  2014年   24篇
  2013年   17篇
  2012年   30篇
  2011年   20篇
  2010年   24篇
  2009年   28篇
  2008年   21篇
  2007年   18篇
  2006年   32篇
  2005年   13篇
  2004年   5篇
  2003年   10篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1998年   3篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
排序方式: 共有363条查询结果,搜索用时 375 毫秒
51.
In the aftermath of the 2004 Indian Ocean tsunami, a large increase in the activity of tsunami hazard and risk mapping is observed. Most of these are site-specific studies with detailed modelling of the run-up locally. However, fewer studies exist on the regional and global scale. Therefore, tsunamis have been omitted in previous global studies comparing different natural hazards. Here, we present a first global tsunami hazard and population exposure study. A key topic is the development of a simple and robust method for obtaining reasonable estimates of the maximum water level during tsunami inundation. This method is mainly based on plane wave linear hydrostatic transect simulations, and validation against results from a standard run-up model is given. The global hazard study is scenario based, focusing on tsunamis caused by megathrust earthquakes only, as the largest events will often contribute more to the risk than the smaller events. Tsunamis caused by non-seismic sources are omitted. Hazard maps are implemented by conducting a number of tsunami scenario simulations supplemented with findings from literature. The maps are further used to quantify the number of people exposed to tsunamis using the Landscan population data set. Because of the large geographical extents, quantifying the tsunami hazard assessment is focusing on overall trends.  相似文献   
52.
According to the results of U-Pb geochronological investigations, the age of the amphibolite protoliths (metabasalts) in the Ust??-Gilyui sequence within the Stanovoi Complex of the Amazar-Gilyui structural and formational zone in the Selenga-Stanovoi Superterrain of the Central Asian fold belt can be estimated at 193 ± 1 Ma. The Nd model age of the Ust??-Gilyui metasedimentary rocks is in the interval of t Nd(DM) = 1.1?C3.1 Ga. This information along with the previously obtained geochronological data are indicative of the fact that the Ust??-Gilyui sequence consists of metasedimentary and metavolcanic rocks of various ages: (1) volcanic rocks with the age of 193 ± 1 Ma; (2) metasedimentary and metavolcanic rocks broken through by the Paleozoic granitoids dated to 370 Ma and characterized by minimum estimations of t Nd(DM) = 1.1 Ga, i.e., rocks with an age of 1.1?C0.4 Ga. In addition, it is quite possible that this sequence also includes more ancient rocks. The SSS Amazar-Gilyui structural and formational zone is likely to be a tectonic mélange composed of the metasedimentary and metavolcanic rocks of the Mesozoic and, probably, Paleozoic and Early Precambrian ages. The studied zone was formed in the Mesozoic, most likely, in the course of the collision processes initiated by the closing up of the Mongol-Okhotsk Ocean.  相似文献   
53.
New data on the stratigraphy and isotopic age of supracrustal rocks from the lower part of the section constituting the northeastern limb of the Lekhta structure (northern Karelia) and their relationships with the basement are considered. Geological-petrographic, lithological-geochemical, and isotopic data are used to define three formations united into the Okhta Group. Immediate relationships between volcanics of the greenstone belt and granitoids of the basement represented by the oldest (for the Baltic Shield: 2.8 Ga) continental weathering crust after granites, are discussed. Isotopic age of volcanics and granite gneisses of the basement indicates that the Lopian supracrustal complex of the Lekhta structure was deposited in a period lasting 16 myr with duration of periods corresponding to formation of the Okhta and Pebozero groups being as long as 8 and 11 myr, respectively. In the regional stratigraphic scale, the entire Archean part of the supracrustal section in the Lekhta structure should be attributed to the Middle Lopian.  相似文献   
54.
Data on the composition, inner structure, and age of volcanic and siliceous-terrigenous complexes and granitoids occurring in association with them in the Caledonian Lake zone in Central Asia are discussed in the context of major relations and trends in the growth of the Caledonian continental crust in the Central Asian Foldbelt (CAFB). The folded structures of the Lake zone host basalt, basalt-andesite, and andesite complexes of volcanic rocks that were formed in distinct geodynamic environments. The volcanic rocks of the basalt complex are noted for high concentrations of TiO2 and alkalis, occur in association with fine-grained siliceous siltstone and siliceous-carbonate rocks, are thus close to oceanic-island complexes, and were likely formed in relation to a mantle hotspot activity far away from erosion regions supplying terrigenous material. The rocks of the basalt-andesite and andesite complexes have lower TiO2 concentrations and moderate concentrations of alkalis and contain rock-forming amphibole. These rocks are accompanied by rudaceous terrigenous sediments, which suggests their origin in island-arc environments, including arcs with a significantly dissected topography. These complexes are accompanied by siliceous-terrigenous sedimentary sequences whose inner structure is close to those of sediments in accretionary wedges. The folded Caledonides of the Lake zone passed through the following evolutionary phases. The island arcs started to develop at 570 Ma, their evolution was associated with the emplacement of layered gabbroids and tonalitetrondhjemite massifs, and continued until the onset of accretion at 515–480 Ma. The accretion was accompanied by the emplacement of large massifs of the tonalite-granodiorite-plagiogranite series. The postaccretionary evolutionary phase at 470–440 Ma of the Caledonides was marked by intrusive subalkaline and alkaline magmatism. The Caledonides are characterized by within-plate magmatic activity throughout their whole evolutionary history, a fact explained by the accretion of Vendian-Cambrian oceanic structures (island arcs, oceanic islands, and back-arc basins) above a mantle hotspot. Indicators of within-plate magmatic activity are subalkaline high-Ti basalts, alkaline-ultrabasic complexes with carbonatites and massifs of subalkaline and alkaline gabbroids, nepheline syenites, alkaline granites, subalkaline granites, and granosyenites. The mantle hotspot likely continued to affect the character of the lithospheric magmatism even after the Caledonian folded terrane was formed.  相似文献   
55.
The U-Pb age of the manganotantalite from rare-metal pegmatites of the Vishnyakovskoe deposit (East Sayan Belt) has been assessed at 1838 ± 3 Ma. The acquired data indicate the pegmatites of this deposit and associated granites of the Sayan complex belong to the postcollision South Siberian igneous belt (1.88–1.84 Ga), which stretches along the southwestern frame of the Siberian Craton by more than 2500 km, from the Yenisei Ridge to the Aldan Shield. Formation of this igneous belt is related to joining (starting from about 1.9 Ga BP) of the series of continental microplates and island arcs to the Siberian Craton; this led to final stabilization of the craton at about 1.8 Ga BP.  相似文献   
56.
The Cambrian explosion, c. 530–515 Ma heralded the arrival of a diverse assembly of multicellular life including the first hard-shelled organisms. Fossils found in Cambrian strata represent the ancestors of most modern animal phyla. In contrast to the apparent explosiveness seen in the Cambrian fossil record, studies of molecular biology hint that the diversification observed in Cambrian strata was rooted in ancestry extending back into the Ediacaran (635–542 Ma). Fossil evidence for this mostly cryptic phase of evolution is derived from the soft-bodied fossils of the Ediacaran biota found throughout the world and bilaterian embryos found in the Doushantuo lagerstätte in South China. The first appearance of Ediacara fauna is thought to have followed the last of the ~ 750–635 Ma Neoproterozoic glacial episodes by 20–30 million years. In this paper, we present evidence for the oldest discovery of the ‘Ediacara’ discoidal fossils Nimbia occlusa and Aspidella terranovica (?) that predate the early Cryogenian glaciations by more than fifty million years. There is considerable disagreement over the significance of discoidal Ediacaran fossils, but our findings may support earlier suggestions that metazoan life has roots extending deeper into the Proterozoic Eon. We also confirm the presence of a Late Cryogenian (e.g. “Marinoan”) glaciation on the Lesser Karatau microcontinent including dropstones and striated clasts within the glacial strata.  相似文献   
57.
We report results of an interdisciplinary project devoted to the 26 km‐diameter Ries crater and to the genesis of suevite. Recent laboratory analyses of “crater suevite” occurring within the central crater basin and of “outer suevite” on top of the continuous ejecta blanket, as well as data accumulated during the past 50 years, are interpreted within the boundary conditions imposed by a comprehensive new effort to model the crater formation and its ejecta deposits by computer code calculations (Artemieva et al. 2013). The properties of suevite are considered on all scales from megascopic to submicroscopic in the context of its geological setting. In a new approach, we reconstruct the minimum/maximum volumes of all allochthonous impact formations (108/116 km3), of suevite (14/22 km3), and the total volume of impact melt (4.9/8.0 km3) produced by the Ries impact event prior to erosion. These volumes are reasonably compatible with corresponding values obtained by numerical modeling. Taking all data on modal composition, texture, chemistry, and shock metamorphism of suevite, and the results of modeling into account, we arrive at a new empirical model implying five main consecutive phases of crater formation and ejecta emplacement. Numerical modeling indicates that only a very small fraction of suevite can be derived from the “primary ejecta plume,” which is possibly represented by the fine‐grained basal layer of outer suevite. The main mass of suevite was deposited from a “secondary plume” induced by an explosive reaction (“fuel‐coolant interaction”) of impact melt with water and volatile‐rich sedimentary rocks within a clast‐laden temporary melt pool. Both melt pool and plume appear to be heterogeneous in space and time. Outer suevite appears to be derived from an early formed, melt‐rich and clast‐poor plume region rich in strongly shocked components (melt ? clasts) and originating from an upper, more marginal zone of the melt pool. Crater suevite is obviously deposited from later formed, clast‐rich and melt‐poor plumes dominated by unshocked and weakly shocked clasts and derived from a deeper, central zone of the melt pool. Genetically, we distinguish between “primary suevite” which includes dike suevite, the lower sublayer of crater suevite, and possibly a basal layer of outer suevite, and “secondary suevite” represented by the massive upper sublayer of crater suevite and the main mass of outer suevite.  相似文献   
58.
The Early Caledonian folded area of Central Asia comprises a variety of continental crust fragments with Early to Late Precambrian crystalline basement. Crystalline rocks, which form part of the Songino block, outcrop at the junction between the Dzabkhan and Tuva-Mongolian terranes. The Bayannur zone in the southern part of the Songino block contains the Bayannur migmatite-gneiss and Kholbonur terrigenous-metavolcanic metamorphic complexes. Previous studies provide the 802 ± 6 Ma age for the regional metamorphism and folding within the Bayannur complex. On the basis of the minimum Nd model age of 1.5 Ga, gneisses from this complex cannot be regarded as Early Precambrian. Two main rock associations were distinguished in the Kholbonur complex. Mafic metavolcanics compose the dominant lithology of the first rock association, whereas the second association comprises terrigenous-volcanic and predominantly terrigenous suites. The rocks of the predominantly terrigenous suite, including mudstones, sandstones, and conglomerates, are interpreted to derive from the Late Riphean accretionary prism. The lithology and composition of metaterrigenous rocks suggest that they were possibly derived from erosion of a volcanic arc. The upper age limit of this suite is constrained by postkinematic granites (790 ± 3 Ma; U-Pb zircon), the lower age is given by plagiogranite (874 ± 3 Ma; U-Pb zircon) from comglomerate pebbles. Therefore, the timing of deposition of this terrigenous suite can be bracketed by the 874–790 Ma time interval. These ages and compositional features of the Kholbonur complex terrigenous rocks suggest that the convergence took place at around 870–880 Ma and thus it can be correlated with the divergent processes between the blocks of continental crust composing the supercontinent Rodinia.  相似文献   
59.
This paper presents the U-Pb zircon age of pulaskite of the main phase (294 ± 1 Ma) and the rare metal syenite (283 ± 8 Ma) of the Burpala alkaline pluton. The geochronological data show that it was formed in the Early Permian. By age, it is comparable with the Synnyr pluton of the Synnyr rift zone, alkaline granitic rocks and bimodal volcanic associations of the Uda-Vitim rift zone, and carbonatites of the Saizhen rift zone of the Central Asian foldbelt. These intraplate igneous complexes were formed almost simultaneously with crustal granitic rocks of the Angara-Vitim batholite. All of this gives ground to suppose that the origination of their parental melts is a result of the influence of the mantle hot spot or mantle plume on the lithosphere that led to extensive crustal anatexis.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号